<一>基礎
RSA算法非常簡單,概述如下:
找兩素數p和q
取n=p*q
取t=(p-1)*(q-1)
取任何一個數e,要求滿足e<t并且e與t互素(就是最大公因數為1)
取d*e%t==1
這樣最終得到三個數: n d e
設消息為數M (M <n)
設c=(M**d)%n就得到了加密后的消息c
設m=(c**e)%n則 m == M,從而完成對c的解密。
注:**表示次方,上面兩式中的d和e可以互換。
在對稱加密中:
n d兩個數構成公鑰,可以告訴別人;
n e兩個數構成私鑰,e自己保留,不讓任何人知道。
給別人發送的信息使用e加密,只要別人能用d解開就證明信息是由你發送的,構成了簽名機制。
別人給你發送信息時使用d加密,這樣只有擁有e的你能夠對其解密。
rsa的安全性在于對于一個大數n,沒有有效的方法能夠將其分解
從而在已知n d的情況下無法獲得e;同樣在已知n e的情況下無法
求得d。
<二>實踐
接下來我們來一個實踐,看看實際的操作:
找兩個素數:
p=47
q=59
這樣
n=p*q=2773
t=(p-1)*(q-1)=2668
取e=63,滿足e<t并且e和t互素
用perl簡單窮舉可以獲得滿主 e*d%t ==1的數d:
C:\Temp>perl -e "foreach $i (1..9999){ print($i),last if $i*63%2668==1 }"
847
即d=847
最終我們獲得關鍵的
n=2773
d=847
e=63
取消息M=244我們看看
加密:
c=M**d%n = 244**847%2773
用perl的大數計算來算一下:
C:\Temp>perl -Mbigint -e "print 244**847%2773"
465
即用d對M加密后獲得加密信息c=465
延伸閱讀
文章來源于領測軟件測試網 http://www.kjueaiud.com/