“作為一名C++程序員,我們早已掌握了面向對象程序設計的基本概念,而且Java的語法無疑是非常熟悉的。事實上,Java本來就是從C++衍生出來的?!?BR>
然而,C++和Java之間仍存在一些顯著的差異??梢赃@樣說,這些差異代表著技術的極大進步。一旦我們弄清楚了這些差異,就會理解為什么說Java是一種優秀的程序設計語言。本附錄將引導大家認識用于區分Java和C++的一些重要特征。
(1) 最大的障礙在于速度:解釋過的Java要比C的執行速度慢上約20倍。無論什么都不能阻止Java語言進行編譯。寫作本書的時候,剛剛出現了一些準實時編譯器,它們能顯著加快速度。當然,我們完全有理由認為會出現適用于更多流行平臺的純固有編譯器,但假若沒有那些編譯器,由于速度的限制,必須有些問題是 Java不能解決的。
(2) 和C++一樣,Java也提供了兩種類型的注釋。
(3) 所有東西都必須置入一個類。不存在全局函數或者全局數據。如果想獲得與全局函數等價的功能,可考慮將static方法和static數據置入一個類里。注意沒有象結構、枚舉或者聯合這一類的東西,一切只有“類”(Class)!
(4) 所有方法都是在類的主體定義的。所以用C++的眼光看,似乎所有函數都已嵌入,但實情并非如何(嵌入的問題在后面講述)。
(5) 在Java中,類定義采取幾乎和C++一樣的形式。但沒有標志結束的分號。沒有class foo這種形式的類聲明,只有類定義。
class aType()
void aMethod() {/* 方法主體 */}
}
(6) Java中沒有作用域范圍運算符“::”。Java利用點號做所有的事情,但可以不用考慮它,因為只能在一個類里定義元素。即使那些方法定義,也必須在一個類的內部,所以根本沒有必要指定作用域的范圍。我們注意到的一項差異是對static方法的調用:使用ClassName.methodName()。除此以外,package(包)的名字是用點號建立的,并能用import關鍵字實現C++的“#include”的一部分功能。例如下面這個語句:
import java.awt.*;
(#include并不直接映射成import,但在使用時有類似的感覺。)
(7) 與C++類似,Java含有一系列“主類型”(Primitive type),以實現更有效率的訪問。在Java中,這些類型包括boolean,char,byte,short,int,long,float以及 double。所有主類型的大小都是固有的,且與具體的機器無關(考慮到移植的問題)。這肯定會對性能造成一定的影響,具體取決于不同的機器。對類型的檢查和要求在Java里變得更苛刻。例如:
■條件表達式只能是boolean(布爾)類型,不可使用整數。
■必須使用象X+Y這樣的一個表達式的結果;不能僅僅用“X+Y”來實現“副作用”。
(8) char(字符)類型使用國際通用的16位Unicode字符集,所以能自動表達大多數國家的字符。
(9) 靜態引用的字串會自動轉換成String對象。和C及C++不同,沒有獨立的靜態字符數組字串可供使用。
(10) Java增添了三個右移位運算符“>>>”,具有與“邏輯”右移位運算符類似的功用,可在最末尾插入零值?!?gt;>”則會在移位的同時插入符號位(即“算術”移位)。
(11) 盡管表面上類似,但與C++相比,Java數組采用的是一個頗為不同的結構,并具有獨特的行為。有一個只讀的length成員,通過它可知道數組有多大。而且一旦超過數組邊界,運行期檢查會自動丟棄一個異常。所有數組都是在內存“堆”里創建的,我們可將一個數組分配給另一個(只是簡單地復制數組句柄)。數組標識符屬于第一級對象,它的所有方法通常都適用于其他所有對象。
(12) 對于所有不屬于主類型的對象,都只能通過new命令創建。和C++不同,Java沒有相應的命令可以“在堆棧上”創建不屬于主類型的對象。所有主類型都只能在堆棧上創建,同時不使用new命令。所有主要的類都有自己的“封裝(器)”類,所以能夠通過new創建等價的、以內存“堆”為基礎的對象(主類型數組是一個例外:它們可象C++那樣通過集合初始化進行分配,或者使用new)。
(13) Java中不必進行提前聲明。若想在定義前使用一個類或方法,只需直接使用它即可——編譯器會保證使用恰當的定義。所以和在C++中不同,我們不會碰到任何涉及提前引用的問題。
(14) Java沒有預處理機。若想使用另一個庫里的類,只需使用import命令,并指定庫名即可。不存在類似于預處理機的宏。
(15) Java用包代替了命名空間。由于將所有東西都置入一個類,而且由于采用了一種名為“封裝”的機制,它能針對類名進行類似于命名空間分解的操作,所以命名的問題不再進入我們的考慮之列。數據包也會在單獨一個庫名下收集庫的組件。我們只需簡單地“import”(導入)一個包,剩下的工作會由編譯器自動完成。
(16) 被定義成類成員的對象句柄會自動初始化成null。對基本類數據成員的初始化在Java里得到了可靠的保障。若不明確地進行初始化,它們就會得到一個默認值(零或等價的值)??蓪λ鼈冞M行明確的初始化(顯式初始化):要么在類內定義它們,要么在構建器中定義。采用的語法比C++的語法更容易理解,而且對于 static和非static成員來說都是固定不變的。我們不必從外部定義static成員的存儲方式,這和C++是不同的。
(17) 在Java里,沒有象C和C++那樣的指針。用new創建一個對象的時候,會獲得一個引用(本書一直將其稱作“句柄”)。例如:
String s = new String("howdy");
然而,C++引用在創建時必須進行初始化,而且不可重定義到一個不同的位置。但Java引用并不一定局限于創建時的位置。它們可根據情況任意定義,這便消除了對指針的部分需求。在C和C++里大量采用指針的另一個原因是為了能指向任意一個內存位置(這同時會使它們變得不安全,也是Java不提供這一支持的原因)。指針通常被看作在基本變量數組中四處移動的一種有效手段。Java允許我們以更安全的形式達到相同的目標。解決指針問題的終極方法是“固有方法” (已在附錄A討論)。將指針傳遞給方法時,通常不會帶來太大的問題,因為此時沒有全局函數,只有類。而且我們可傳遞對對象的引用。Java語言最開始聲稱自己“完全不采用指針!”但隨著許多程序員都質問沒有指針如何工作?于是后來又聲明“采用受到限制的指針”。大家可自行判斷它是否“真”的是一個指針。但不管在何種情況下,都不存在指針“算術”。
(18) Java提供了與C++類似的“構建器”(Constructor)。如果不自己定義一個,就會獲得一個默認構建器。而如果定義了一個非默認的構建器,就不會為我們自動定義默認構建器。這和C++是一樣的。注意沒有復制構建器,因為所有自變量都是按引用傳遞的。
(19) Java中沒有“破壞器”(Destructor)。變量不存在“作用域”的問題。一個對象的“存在時間”是由對象的存在時間決定的,并非由垃圾收集器決定。有個finalize()方法是每一個類的成員,它在某種程度上類似于C++的“破壞器”。但finalize()是由垃圾收集器調用的,而且只負責釋放“資源”(如打開的文件、套接字、端口、URL等等)。如需在一個特定的地點做某樣事情,必須創建一個特殊的方法,并調用它,不能依賴 finalize()。而在另一方面,C++中的所有對象都會(或者說“應該”)破壞,但并非Java中的所有對象都會被當作“垃圾”收集掉。由于 Java不支持破壞器的概念,所以在必要的時候,必須謹慎地創建一個清除方法。而且針對類內的基礎類以及成員對象,需要明確調用所有清除方法。
(20) Java具有方法“過載”機制,它的工作原理與C++函數的過載幾乎是完全相同的。
(21) Java不支持默認自變量。
(22) Java中沒有goto。它采取的無條件跳轉機制是“break 標簽”或者“continue 標準”,用于跳出當前的多重嵌套循環。
(23) Java采用了一種單根式的分級結構,因此所有對象都是從根類Object統一繼承的。而在C++中,我們可在任何地方啟動一個新的繼承樹,所以最后往往看到包含了大量樹的“一片森林”。在Java中,我們無論如何都只有一個分級結構。盡管這表面上看似乎造成了限制,但由于我們知道每個對象肯定至少有一個 Object接口,所以往往能獲得更強大的能力。C++目前似乎是唯一沒有強制單根結構的唯一一種OO語言。
(24) Java沒有模板或者參數化類型的其他形式。它提供了一系列集合:Vector(向量),Stack(堆棧)以及Hashtable(散列表),用于容納 Object引用。利用這些集合,我們的一系列要求可得到滿足。但這些集合并非是為實現象C++“標準模板庫”(STL)那樣的快速調用而設計的。 Java 1.2中的新集合顯得更加完整,但仍不具備正宗模板那樣的高效率使用手段。
(25) “垃圾收集”意味著在Java中出現內存漏洞的情況會少得多,但也并非完全不可能(若調用一個用于分配存儲空間的固有方法,垃圾收集器就不能對其進行跟蹤監視)。然而,內存漏洞和資源漏洞多是由于編寫不當的finalize()造成的,或是由于在已分配的一個塊尾釋放一種資源造成的(“破壞器”在此時顯得特別方便)。垃圾收集器是在C++基礎上的一種極大進步,使許多編程問題消彌于無形之中。但對少數幾個垃圾收集器力有不逮的問題,它卻是不大適合的。但垃圾收集器的大量優點也使這一處缺點顯得微不足道。
(26) Java內建了對多線程的支持。利用一個特殊的Thread類,我們可通過繼承創建一個新線程(放棄了run()方法)。若將synchronized (同步)關鍵字作為方法的一個類型限制符使用,相互排斥現象會在對象這一級發生。在任何給定的時間,只有一個線程能使用一個對象的 synchronized方法。在另一方面,一個synchronized方法進入以后,它首先會“鎖定”對象,防止其他任何synchronized方法再使用那個對象。只有退出了這個方法,才會將對象“解鎖”。在線程之間,我們仍然要負責實現更復雜的同步機制,方法是創建自己的“監視器”類。遞歸的 synchronized方法可以正常運作。若線程的優先等級相同,則時間的“分片”不能得到保證。
(27) 我們不是象C++那樣控制聲明代碼塊,而是將訪問限定符(public,private和protected)置入每個類成員的定義里。若未規定一個“顯式”(明確的)限定符,就會默認為“友好的”(friendly)。這意味著同一個包里的其他元素也可以訪問它(相當于它們都成為C++的 “friends”——朋友),但不可由包外的任何元素訪問。類——以及類內的每個方法——都有一個訪問限定符,決定它是否能在文件的外部“可見”。 private關鍵字通常很少在Java中使用,因為與排斥同一個包內其他類的訪問相比,“友好的”訪問通常更加有用。然而,在多線程的環境中,對 private的恰當運用是非常重要的。Java的protected關鍵字意味著“可由繼承者訪問,亦可由包內其他元素訪問”。注意Java沒有與C+ +的protected關鍵字等價的元素,后者意味著“只能由繼承者訪問”(以前可用“private protected”實現這個目的,但這一對關鍵字的組合已被取消了)。
(28) 嵌套的類。在C++中,對類進行嵌套有助于隱藏名稱,并便于代碼的組織(但C++的“命名空間”已使名稱的隱藏顯得多余)。Java的“封裝”或“打包” 概念等價于C++的命名空間,所以不再是一個問題。Java 1.1引入了“內部類”的概念,它秘密保持指向外部類的一個句柄——創建內部類對象的時候需要用到。這意味著內部類對象也許能訪問外部類對象的成員,毋需任何條件——就好象那些成員直接隸屬于內部類對象一樣。這樣便為回調問題提供了一個更優秀的方案——C++是用指向成員的指針解決的。
(29) 由于存在前面介紹的那種內部類,所以Java里沒有指向成員的指針。
(30) Java不存在“嵌入”(inline)方法。Java編譯器也許會自行決定嵌入一個方法,但我們對此沒有更多的控制權力。在Java中,可為一個方法使用final關鍵字,從而“建議”進行嵌入操作。然而,嵌入函數對于C++的編譯器來說也只是一種建議。
(31) Java中的繼承具有與C++相同的效果,但采用的語法不同。Java用extends關鍵字標志從一個基礎類的繼承,并用super關鍵字指出準備在基礎類中調用的方法,它與我們當前所在的方法具有相同的名字(然而,Java中的super關鍵字只允許我們訪問父類的方法——亦即分級結構的上一級)。通過在C++中設定基礎類的作用域,我們可訪問位于分級結構較深處的方法。亦可用super關鍵字調用基礎類構建器。正如早先指出的那樣,所有類最終都會從 Object里自動繼承。和C++不同,不存在明確的構建器初始化列表。但編譯器會強迫我們在構建器主體的開頭進行全部的基礎類初始化,而且不允許我們在主體的后面部分進行這一工作。通過組合運用自動初始化以及來自未初始化對象句柄的異常,成員的初始化可得到有效的保證。
public class Foo extends Bar { public Foo(String msg) { super(msg); // Calls base constructor } public baz(int i) { // Override super.baz(i); // Calls base method } }
public interface Face { public void smile(); } public class Baz extends Bar implements Face { public void smile( ) { System.out.println("a warm smile"); } }
public void f(Obj b) throws IOException { myresource mr = b.createResource(); try { mr.UseResource(); } catch (MyException e) { // handle my exception } catch (Throwable e) { // handle all other exceptions } finally { mr.dispose(); // special cleanup } }