• <ruby id="5koa6"></ruby>
    <ruby id="5koa6"><option id="5koa6"><thead id="5koa6"></thead></option></ruby>

    <progress id="5koa6"></progress>

  • <strong id="5koa6"></strong>
  • MapReduce實例淺析(2)

    發表于:2015-07-10來源:uml.org.cn作者:open經驗庫點擊數: 標簽:數據庫
    (3)執行MapReduce任務 在MapReduce中,由Job對象負責管理和運行一個計算任務,并通過Job的一些方法對任務的參數進行相關的設置。此處設置了使用TokenizerMapp

      (3)執行MapReduce任務

      在MapReduce中,由Job對象負責管理和運行一個計算任務,并通過Job的一些方法對任務的參數進行相關的設置。此處設置了使用TokenizerMapper完成Map過程和使用的 IntSumReduce完成Combine和Reduce過程。還設置了Map過程和Reduce過程的輸出類型:key的類型為Text,value 的類型為IntWritable。任務的輸入和輸出路徑則由命令行參數指定,并由FileInputFormat和FileOutputFormat分別設定。完成相應任務的參數設定后,即可調用job.waitForCompletion()方法執行任務,主函數實現如下:

    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (otherArgs.length != 2) {
          System.err.println("Usage: wordcount  ");
          System.exit(2);
        }
        Job job = new Job(conf, "word count");
        job.setJarByClass(wordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
      }
    }
    

      運行結果如下:

      14/12/17 05:53:26 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId=

      14/12/17 05:53:26 INFO input.FileInputFormat: Total input paths to process : 2

      14/12/17 05:53:26 INFO mapred.JobClient: Running job: job_local_0001

      14/12/17 05:53:26 INFO input.FileInputFormat: Total input paths to process : 2

      14/12/17 05:53:26 INFO mapred.MapTask: io.sort.mb = 100

      14/12/17 05:53:27 INFO mapred.MapTask: data buffer = 79691776/99614720

      14/12/17 05:53:27 INFO mapred.MapTask: record buffer = 262144/327680

      key = 0

      value = Hello World

      key = 12

      value = Bye World

      14/12/17 05:53:27 INFO mapred.MapTask: Starting flush of map output

      14/12/17 05:53:27 INFO mapred.MapTask: Finished spill 0

      14/12/17 05:53:27 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting

      14/12/17 05:53:27 INFO mapred.LocalJobRunner:

      14/12/17 05:53:27 INFO mapred.TaskRunner: Task ‘attempt_local_0001_m_000000_0′ done.

      14/12/17 05:53:27 INFO mapred.MapTask: io.sort.mb = 100

      14/12/17 05:53:27 INFO mapred.MapTask: data buffer = 79691776/99614720

      14/12/17 05:53:27 INFO mapred.MapTask: record buffer = 262144/327680

      14/12/17 05:53:27 INFO mapred.MapTask: Starting flush of map output

      key = 0

      value = Hello Hadoop

      key = 13

      value = Bye Hadoop

      14/12/17 05:53:27 INFO mapred.MapTask: Finished spill 0

      14/12/17 05:53:27 INFO mapred.TaskRunner: Task:attempt_local_0001_m_000001_0 is done. And is in the process of commiting

      14/12/17 05:53:27 INFO mapred.LocalJobRunner:

      14/12/17 05:53:27 INFO mapred.TaskRunner: Task ‘attempt_local_0001_m_000001_0′ done.

      14/12/17 05:53:27 INFO mapred.LocalJobRunner:

      14/12/17 05:53:27 INFO mapred.Merger: Merging 2 sorted segments

      14/12/17 05:53:27 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 73 bytes

      14/12/17 05:53:27 INFO mapred.LocalJobRunner:

      14/12/17 05:53:27 INFO mapred.TaskRunner: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting

      14/12/17 05:53:27 INFO mapred.LocalJobRunner:

      14/12/17 05:53:27 INFO mapred.TaskRunner: Task attempt_local_0001_r_000000_0 is allowed to commit now

      14/12/17 05:53:27 INFO output.FileOutputCommitter: Saved output of task ‘attempt_local_0001_r_000000_0′ to out

      14/12/17 05:53:27 INFO mapred.LocalJobRunner: reduce > reduce

      14/12/17 05:53:27 INFO mapred.TaskRunner: Task ‘attempt_local_0001_r_000000_0′ done.

      14/12/17 05:53:27 INFO mapred.JobClient: map 100% reduce 100%

      14/12/17 05:53:27 INFO mapred.JobClient: Job complete: job_local_0001

      14/12/17 05:53:27 INFO mapred.JobClient: Counters: 14

      14/12/17 05:53:27 INFO mapred.JobClient: FileSystemCounters

    原文轉自:http://www.uml.org.cn/sjjm/201501201.asp

    老湿亚洲永久精品ww47香蕉图片_日韩欧美中文字幕北美法律_国产AV永久无码天堂影院_久久婷婷综合色丁香五月

  • <ruby id="5koa6"></ruby>
    <ruby id="5koa6"><option id="5koa6"><thead id="5koa6"></thead></option></ruby>

    <progress id="5koa6"></progress>

  • <strong id="5koa6"></strong>