• <ruby id="5koa6"></ruby>
    <ruby id="5koa6"><option id="5koa6"><thead id="5koa6"></thead></option></ruby>

    <progress id="5koa6"></progress>

  • <strong id="5koa6"></strong>
  • Bliza++ 求函數的二階導數

    發表于:2007-05-25來源:作者:點擊數: 標簽:RobinKinBliza++二階導數整理
    //整理 by RobinKin 下面在[0,1) 的范圍中,以delta為步長 ,用[ 1 -2 1 ] 的方法計算二階導數 看看和精確值的誤差 */ //整理 by RobinKin #include using namespace blitz; int main() { // In this example, the function cos(x)^2 and its second derivat

    //整理 by RobinKin

    下面在[0,1) 的范圍中,以delta為步長 ,用[ 1 -2  1 ] 的方法計算二階導數

    看看和精確值的誤差
    */


    //整理 by RobinKin

    #include

    using namespace blitz;

    int main()
    {
        // In this example, the function cos(x)^2 and its second derivative
        // 2 (sin(x)^2 - cos(x)^2) are sampled over the range [0,1).
        // The second derivative is approximated numerically using a
        // [ 1 -2  1 ] mask, and the approximation error is computed.

    /* cos(x)^2  的二階導數 是2 (sin(x)^2 - cos(x)^2)

    下面在[0,1) 的范圍中,以delta為步長 ,用[ 1 -2  1 ] 的方法計算二階導數

    看看和精確值的誤差
    */


        const int numSamples = 100;              // Number of samples
        double delta = 1. / numSamples;          // Spacing of samples
        Range R(0, numSamples - 1);              // Index set of the vector

        // Sample the function y = cos(x)^2 over [0,1)
        //
        // An object of type Range can be treated as a vector, and used
        // as a term in vector expressions.
        //
        // The initialization for y (below) will be translated via expression
        // templates into something of the flavour
        //
        // for (unsigned i=0; i < 99; ++i)
        // {
        //     double _t1 = cos(i * delta);
        //     y[i] = _t1 * _t1;
        // }
       
        Vector y = sqr(cos(R * delta));

        // Sample the exact second derivative
        Vector y2exact = 2.0 * (sqr(sin(R * delta)) - sqr(cos(R * delta)));

        // Approximate the 2nd derivative using a [ 1 -2  1 ] mask
        // We can only apply this mask to the elements 1 .. 98, since
        // we need one element on either side to apply the mask.
        Range I(1,numSamples-2);
        Vector y2(numSamples);

        y2(I) = (y(I-1) - 2 * y(I) + y(I+1)) / (delta*delta);
     
        // The above difference equation will be transformed into
        // something along the lines of
        //
        // double _t2 = delta*delta;
        // for (int i=1; i < 99; ++i)
        //     y2[i] = (y[i-1] - 2 * y[i] + y[i+1]) / _t2;
     
        // Now calculate the root mean square approximation error:

        double error = sqrt(mean(sqr(y2(I) - y2exact(I))));
     
        // Display a few elements from the vectors.
        // This range constructor means elements 1 to 91 in increments
        // of 15.
        Range displayRange(1, 91, 15);
     
        cout << "Exact derivative:" << y2exact(displayRange) << endl
             << "Approximation:   " << y2(Range(displayRange)) << endl
             << "RMS Error:       " << error << endl;

        return 0;
    }


    Output:

    Exact derivative:[    -1.9996  -1.89847  -1.62776  -1.21164 -0.687291 -0.1015495
       ]
    Approximation:   [   -1.99953  -1.89841   -1.6277   -1.2116 -0.687269 -0.1015468
       ]
    RMS Error:       4.24826e-05

     


       

    原文轉自:http://www.kjueaiud.com

    評論列表(網友評論僅供網友表達個人看法,并不表明本站同意其觀點或證實其描述)
    老湿亚洲永久精品ww47香蕉图片_日韩欧美中文字幕北美法律_国产AV永久无码天堂影院_久久婷婷综合色丁香五月

  • <ruby id="5koa6"></ruby>
    <ruby id="5koa6"><option id="5koa6"><thead id="5koa6"></thead></option></ruby>

    <progress id="5koa6"></progress>

  • <strong id="5koa6"></strong>